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ABSTRACT

Increasing consumer concerns underscore the im-
portance of verifying the practices and origins of food, 
especially certified premium products. The aim of this 
study was to evaluate the ability of Fourier-transform 
mid-infrared (FT-MIR) spectroscopy to authenticate 
animal welfare parameters, farming practices, and dairy 
systems. Data on farm characteristics were obtained 
from the Parmigiano Reggiano Consortium in northern 
Italy. Animal welfare data were collected by trained 
veterinarians using the assessment protocol developed 
by the Italian National Reference Center for Animal 
Welfare (CReNBA), and bulk milk test-day data were 
obtained from the laboratory of the Breeders Association 
of the Emilia Romagna Region. A merged final dataset of 
12,083 bulk FT-MIR spectra records from 949 farms was 
created. Using a nonhierarchical clustering approach, the 
farms were classified into 5 dairy systems: 2 traditional 
systems comprising farms located in either the Apen-
nines or the Po Plain; 2 modern systems, one that used 
TMR and one did not; and one traditional dairy system 
comprising farms rearing local breeds. To evaluate the 
ability of bulk milk to capture differences in farming 
systems, we conducted an ANOVA on milk composition. 
The linear models included the following effects: season, 
dairy system, farm, and the interaction between dairy 
system and season. The effect of the dairy system was 
significant for all milk composition traits. A 10-iteration 
linear discriminant analysis was used to evaluate the dis-
criminative ability of the spectra in classifying farming 
practices and dairy systems. The average results of the 

area under the receiver operating characteristic curve re-
vealed good authentication performance for genetic type 
(0.98), housing system (0.91), and feeding system (0.89), 
and medium-low authentication performance for geo-
graphical area (0.70); poor results were obtained for the 
percentage of concentrate in the diet and animal welfare 
parameters (0.57–0.64). With regard to dairy systems, 
the best result was obtained when dairy systems were 
grouped into 2 simplified categories, traditional versus 
modern (0.89), instead of the 5 categories (0.87). The 
results of this study show that FT-MIR is a useful tool 
for authenticating farming practices and dairy systems, 
but not animal welfare as defined by CReNBA evaluation 
criteria. Our results show that infrared spectroscopy has 
the potential to authenticate dairy products and quality 
label certifications.
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INTRODUCTION

European Protected Designation of Origin (PDO) cer-
tification is intended to meet consumer demand for high 
quality products distinguished by a specific production 
area and regulated production processes (Espejel et al., 
2008). This certification has enabled the PDO dairy sec-
tor to create a connection between consumers and the 
various steps of the production chain. With more than 
3.5 million wheels of cheese produced per year, Parmi-
giano Reggiano is one of the most consumed and widely 
exported Italian PDO cheeses is (Lovarelli et al., 2022). 
This hard, slow-ripened, cooked cheese is produced 
according to strict regulations supervised by the PDO 
certification body and the Parmigiano Reggiano Consor-
tium (PRC) (Cozzi et al., 2019). Consumers are now 
showing a growing interest in understanding the details 
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of milk production systems, in particular the geographi-
cal area of origin (Becchi et al., 2023), the breeds used 
(Romanzin et al., 2015), animal welfare standards (de 
Graaf et al., 2016), and feeding practices (Moscovici 
Joubran et al., 2021). This has led the PRC to create ad-
ditional distinctions in production origin, such as chees-
es produced from single breed milk or from herds reared 
in mountainous areas. In addition, since 2004, the Italian 
Ministry of Health (http:​/​/​www​.salute​.gov​.it) has been 
collaborating with the Experimental Zooprophylactic 
Institute of Lombardy and Emilia Romagna (IZSLER) 
to develop and implement, through the Italian National 
Reference Center for Animal Welfare (CReNBA), an 
official protocol to assess animal welfare (Bertocchi et 
al., 2018). Therefore, routine verification and authen-
tication of animal welfare and farming practices (i.e., 
use of antibiotics, animal feeding or reduction of green-
house gas emissions), performed by CReNBA trained 
veterinarians, has become a key objective in the dairy 
industry (Olynk and Ortega, 2013). For these purposes, 
farm information needs to be gathered continuously, 
quickly and cost effectively. Because milk collection 
takes place daily, it could be a suitable source of infor-
mation to meet these conditions. Mid-infrared spectros-
copy (MIR) has the potential to be a reliable tool for the 
authentication of farming practices, not only in terms of 
the above-mentioned criteria for data collection, but also 
because MIR has been widely used in the dairy industry 
for several decades (Bergamaschi et al., 2020; Prache et 
al., 2020). Mid-infrared spectroscopy is a nonperturba-
tive and label-free technique that employs the interac-
tion between infrared light and the molecular bonds of 
a sample to extract biological information (Baker et 
al., 2014, Mota et al., 2024). Its ability to distinguish 
between different milk samples is made possible by the 
variations in their biochemical compounds (Gross and 
Bruckmaier, 2019). Mid-infrared spectroscopy has been 
found to be effective in determining the composition of 
milk (ICAR, 2016), detecting adulteration (Santos et al., 
2013), identifying the animal species of origin (Souhas-
sou et al., 2018), determining freshness (Su et al., 2024), 
and predicting blood biomarkers for evaluating animal 
health and welfare at the individual level (Giannuzzi et 
al., 2023; Mota et al., 2023). Nonetheless, the potential 
of MIR to authenticate farming practices (Kamadal and 
Karoui, 2015; Soyeurt, 2023), and particularly animal 
welfare parameters (Arnould et al., 2013; Bahadi et al., 
2021), using bulk milk has been relatively underex-
plored. Encouraging results so far include the authenti-
cation of feed restrictions in PDO cheese (Coppa et al., 
2021), feeding systems (Valenti et al., 2013; Capuano 
et al., 2014), and farming systems (Bergamaschi et al., 
2020). Because of their known effect on milk compo-
sition, production characteristics such as geographical 

origin, feeding system, and breeds used are expected to 
have the potential for authentication by MIR. However, 
it appears that better results are obtained by combining 
several farming practices rather than analyzing them 
individually (Coppa et al., 2021). Combining produc-
tion characteristics allows for the detection of greater 
differences in milk fingerprinting, which could pave the 
way for the authentication of production systems. In ad-
dition, changes in milk composition are also attributable 
to factors related to animal welfare parameters. One of 
the most obvious is cow health (Arnould et al., 2013), as 
observed, for example, through mammary gland condi-
tion (Dufour et al., 2011), energy balance (Stoop et al., 
2009; McParland et al., 2011), body condition (Roche 
et al., 2009), and metabolic disorders (Giannuzzi et al., 
2023). Other animal welfare indicators, such as freedom 
of movement, access to water and feed (Bahadi et al., 
2021; Golher et al., 2021), and even animal cleanliness 
(Sant'Anna and Paranhos da Costa, 2011), have also 
been associated with variability in milk composition, 
which means that milk constituents could be used as in-
dicators of animal welfare (Giannuzzi et al., 2024a,b). It 
also means that MIR could, in turn, also identify animal 
welfare parameters (Bahadi et al., 2021).

The objectives of this study, therefore, were to evaluate 
the effectiveness of Fourier-transform MIR (FT-MIR) 
technology to authenticate (1) animal welfare param-
eters, (2) farming characteristics and practices, and (3) 
dairy systems classified through cluster analysis in terms 
of common farming practices and farm characteristics.

MATERIALS AND METHODS

Data Structure

For the present study, data on farms affiliated with 
the PRC (northern Italy) were collected from various 
sources. The PRC provided data on farm practices and 
characteristics, including structure, size, and manage-
ment, from 983 farms across various areas, including 
128,411 cows of Holstein Friesian, Brown Swiss, 
Reggiana, and Modenese breeds. For the same farms, 
animal welfare evaluation was conducted by CReNBA. 
The farms were surveyed in 2022 and 2023. Milk yield 
and composition data were obtained from the official 
Italian milk recording system and comprised 22,010 
records from 1,508 farms compiled between January 
2022 and September 2023. Bulk milk spectral data 
were obtained from the laboratory of the Breeders As-
sociation of the Emilia Romagna Region (ARAER) in 
Reggio Emilia, Italy; these consisted of 20,363 records 
from 1,485 farms collected over the same period. The 
data from these various sources were merged to cre-
ate the final dataset, which consisted of 12,083 records 

Ramirez Mauricio et al.: INFRARED SPECTROSCOPY AUTHENTICATION

http://www.salute.gov.it


Journal of Dairy Science Vol. 108 No. 3, 2025

2644

from 949 farms (Supplemental Figure S1; see Notes), 
with an average of 12.73 (±2.75, SD) sample spectra 
records per farm.

Animal Welfare Evaluation Data

The CReNBA scoring system for dairy cattle evalu-
ates various aspects of welfare using a protocol based 
on specific indicators, following the guidelines of the 
Ministry of Health and often aligned with the European 
Welfare Quality approach (Ventura et al., 2021). Veteri-
narians trained by CReNBA gather data using standard-
ized checklists, ensuring consistency. Observations are 
made through direct inspection of the herd, sometimes 
involving individual assessments of selected animals 
to get a representative sample. The evaluation is an 
assessment of the farm as a whole and consists of 70 
indicators divided in 3 different areas: Area A refers 
to farm management (MGT), area B to farm structure 
and equipment (SAE), and area C to animal-based 
measures (ABM), the latter including potential effects 
directly observable on the animals. The MGT score 
considered the number of farm workers and their level 
of expertise, the method of supplying feed and drink-
ing water to the different livestock categories (lactat-
ing and dry cows, heifers, calves), the management of 
sick animals, and barn cleanliness. The SAE score was 
based on the characteristics of the barn (presence or 
absence of external paddocks, the spaces allocated for 
resting and feeding, availability of drinking troughs, 
and floor and bedding conditions), the presence and 
management of a specific area for diseased animals, the 
milking system maintenance, and the condition of the 
equipment for maintaining an optimal internal climate. 
The ABM score focused on the animals’ nutritional sta-
tus assessed by BCS, their cleanliness, the prevalence 
of diseases (e.g., lameness, mastitis, ketosis, abscesses, 
reproductive trait infections), and the mortality rate 
per animal category. The comprehensive checklist for 
livestock species and production systems is available at 
https:​/​/​www​.classyfarm​.it/​.

The results of this evaluation are conveyed through a 
welfare score, as described by Bertocchi et al. (2018). 
Briefly, the score for each area is calculated as the 
weighted sum of the scores for each component (obser-
vation) related to a particular area, with the final value 
ranging from 0% (the lowest level of animal welfare) to 
100% (the highest level of animal welfare). In this study, 
the scores were discretized in 3 classes, following the 
methodology of Ginestreti et al. (2020). We used the 
mean ± 0.5 SD as a threshold for each area score, thus 
obtaining the following classes: low, for farms scoring 
70% or less; intermediate, for those scoring between 
70% to 80%; and high, for those scoring more than 80%.

Farming Practices and Characteristics Data

Farm data were provided by the PRC and included 
the geographical area (using a 500 m above sea level 
threshold of altitude to classify areas as either the Po 
Plain or the Apennines), the number of animals (lactating 
cows, dry cows, replacement heifers) and their breeds 
(including Holstein Friesian, Brown Swiss, Reggiana, 
and Modenese), the type of animal housing (freestall 
vs. tiestall), and feed administration (TMR vs. separated 
feedstuffs with concentrates administered via automatic 
systems and forages ad libitum). In addition, informa-
tion on the proportion of concentrate (%) in the diet of 
lactating cows was recorded for each farm. In this study, 
a 50% threshold was used to evaluate the predictive abil-
ity of concentrate proportion, categorizing its use into 
2 groups: low (<50%) and high (≥50%). This threshold 
was selected to capture the largest differences in animal 
feeding and their potential effects on milk production. 
Three farms have been removed from the final dataset 
because of missing or incomplete information.

FT-MIR Spectra Collection and Editing

The FT-MIR spectra were recorded and analyzed with a 
L140–14L (Foss A/S, Hillerød, Denmark). The data com-
prised infrared absorbance values at 1,060 wavenumbers 
(5,000 to 930 × cm−1) from the short-wavelength to the 
long-wavelength infrared regions (D’Amico et al., 2009). 
The transmittance (T) of the spectra was converted to ab-
sorbance (A) using the equation A = log(1/T), after which 
the values for each spectral wavelength were standard-
ized to a mean of 0 and a SD of 1. Quality was assessed 
by Mahalanobis distance, with spectra having a distance 
value greater than the mean ± 3 SD considered outliers 
(Whitfield et al., 1987). All analyses were conducted us-
ing the R software version 4.3.2 (R Core Team, 2023).

Statistical Analysis

Clustering. The information related to geographi-
cal area, housing system, genetic type, feeding sys-
tem, milk yield (MY; kg/cow per day), and herd size 
(number of cows) was used to perform a clustering 
analysis to classify farms into different dairy systems 
according to common farming practices. Specifically, 
we used k-means clustering (Yang and Sinaga, 2019), a 
nonhierarchical clustering technique, using the k-means 
function of the Stats R package (R Core Team, 2023). 
The selection of this technique was driven by the pres-
ence of both qualitative and quantitative information 
on the farms. The optimal k number of clusters was 
determined based on the within-cluster sum of square 
error (elbow method, Syakur et al., 2018; Nainggolan 
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et al., 2019), and confirmed by the Dunn index (Ben 
Ncir et al., 2021). For all the information included in the 
clustering, the frequencies of the qualitative traits and 
the descriptive statistics of the quantitative traits were 
carried out for each cluster identified.

Analysis of Variance. An ANOVA for functional 
longevity and milk composition traits was performed 
using a linear mixed model using the lme4 R package 
(Bates et al., 2015), after removing outliers (mean ± 3 
SD). The milk composition traits evaluated were pro-
tein (%), fat (%), lactose (%), urea (mg/dL), fat:​protein 
ratio (FPR), and SCS (U). The model was fitted using 
the following formula:

yijkl = μ + Seasoni + Dairy systemj + (Season  

× Dairy system)ij + Herdk (Dairy system)j + eijkl,

where yijkl is the response variable; μ is the general mean; 
Seasoni is the season (i = winter, December to Febru-
ary; spring, March to May; summer, June to August; or 
autumn, September to November), Dairy systemj is the 
dairy system (j = number of dairy systems identified 
from the clustering analysis); Seasoni × Dairy systemj 
is the effect of the interaction between season i and the 
dairy system j; Herdk is the random effect of the k farm (k 
= 1 to 949) nested within the Dairy systemj; and eijkl is the 
random residual. With this model, the effect of dairy sys-
tem was tested on the error line of herd effect, whereas 
the remaining effects were tested on the residual term.

In addition, for the proportion of concentrate (%) and 
the animal welfare parameters, measured in one test-day 
and restricted in one specific period, thus not affected 
by other nuisances (i.e., season), a simple general linear 
model was adopted using the following formula:

yij = μ + Dairy systemi + eij,

where yij is the response variable; μ is the general mean; 
Dairy systemi is the dairy system (i = number of dairy 
systems identified from the clustering analysis); and eij 
is the random residual. For the 2 models, the differences 
between the LSM in each model were contrasted with 
Bonferroni correction and were declared significant at a 
threshold of P < 0.05.

Predictive Model for Animal Welfare, Farming 
Practices, and Farm Characteristics. A linear dis-
criminant analysis (LDA) was performed to evaluate 
the discriminative ability of the spectra in the clas-
sification of the established animal welfare classes, 
farming practices and farm characteristics using the 
R packages caret (Kuhn, 2008) and MASS (Venables 
and Ripley, 2002). To ensure the robustness and con-
sistency of the analysis, we performed 10 iterations on 

the LDA. In each iteration, the dataset was randomly 
split into a training set (comprising 75% of the data) for 
model calibration, and a testing set (comprising 25% 
of the data) to assess the model performance. Both sets 
included all the classes for the dependent variable in 
similar proportions using the partition function from 
groupdata2 R package (Olsen, 2023). Independence 
between data sets was maintained by assigning all 
spectral samples from a given farm to either the train-
ing or the testing set. The analysis was performed with 
all samples as well as separately within each season of 
the year to avoid biases due to season. Animal welfare 
parameters (MGT, SAE, ABM) divided into the estab-
lished classes (low: ≤70%, medium: >70% to ≤80%, 
and high: >80%), farming practices, and farm charac-
teristics were set as dependent variables, and spectral 
wavelengths were set as independent variables. Model 
performance was assessed by evaluating its accuracy in 
predicting classes within the test sets. The first evalua-
tion focused on the model’s ability to identify different 
classes by analyzing the average percentage of correct-
ly classified samples (CC%) for each class obtained 
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Table 1. Frequency of animal welfare, farming practices, and 
characteristics by categories

Item Frequency, % farms

Animal welfare scores, 0%–100%  
Management: area A  
  High (>80%) 36.9
  Intermediate (>70% to ≤80%) 35.5
  Low (≤70%) 27.6
Farm structure and equipment: area B  
  High (>80%) 11.2
  Intermediate (>70% to ≤80%) 32.6
  Low (≤70%) 56.3
Animal-based measures: area C  
  High (>80%) 37.1
  Intermediate (>70% to ≤80%) 51.4
  Low (≤70%) 11.5
Geographical area  
  Po Plain 73.9
  Apennines 26.1
Housing system  
  Freestall 67.9
  Tiestall 32.1
Genetic type  
  Specialized 97.3
    Holstein Friesian, prevalent 42.8
    Holstein Friesian 42.3
    Brown Swiss, prevalent 11.2
    Brown Swiss 1.1
  Nonspecialized 2.7
    Local breeds (Reggiana, Modenese) 2.7
Feeding system  
  No TMR 56.9
  TMR 43.1
Percentage of concentrate inclusion  
  in the lactating cows’ diet

 

  High (≥50% as fed) 17.6
  Low (<50% as fed) 82.4
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from the 10 iterations of the LDA. The CC% was cal-
culated by dividing the number of correctly classified 
category X samples by the total number of category X 
samples in the reference data. In addition, to evaluate 
the overall model performance, the mean area under the 
receiver operating characteristic curve (ROC-AUC) 
was calculated from the 10 iterations of the LDA. The 
receiver operating characteristic (ROC) curve graphi-
cally represents the true positive rate versus the false 
positive rate for continuous values of a test measure 
in binary classification scenarios (Hoo et al., 2017). 
The ROC-AUC ranges from 0 to 1, where 1 indicates 
perfect classification, 0.5 indicates no discriminative 
power, and values below 0.5 indicate worse than ran-
dom classification. To obtain the ROC for each LDA 
cycle, each class was considered “positive,” and the 
rest were treated as “negative” using the one-versus-all 
approach (Galar et al., 2011). The macro-average was 
then obtained by averaging the results of all groups us-
ing the R multiROC package (Wei et al., 2018).

Predictive Model for Dairy Systems. The ability of 
FT-MIR to authenticate the dairy system was evaluated 
by LDA, with the same methodology as described in the 
previous section applied to the individual farming prac-
tices. In addition, to better interpret and understand the 
classification results (predicted vs. true) produced by the 
predictive LDA model for discriminating the dairy system 
classes, a confusion matrix was constructed. This matrix 
was derived by averaging the class classification results 
from the 10 confusion matrix interactions obtained from 
the LDA model (one interaction per LDA cycle) using all 
samples (Heydarian et al., 2022).

RESULTS

Population Descriptive Statistics

The farms analyzed in this study had an average herd 
size of 123 ± 109 cows, and an average MY of 30 ± 
5.86 kg/cow per day. The milk composition included 
3.39 ± 0.15% protein, 3.75 ± 0.34% fat, 4.86 ± 0.20% 
lactose, 26.98 ± 5.49 mg/dL urea, and 2.80 ± 0.63 SCS, 
with an FPR of 1.11 ± 0.09. The average functional 
longevity, defined as number of calvings, was 2.42 ± 
0.34 lactations/cow, and the diet included 42.1 ± 7.4% 
concentrate. Regarding the animal welfare parameters, 
the average scores were 75.7 ± 9.6% for MGT, 68.1% ± 
9.6% for SAE, and 77.5 ± 6.2% for ABM. The frequen-
cies of the classes obtained from the survey on animal 
welfare, farming practices, and farm characteristics 
are presented in Table 1. These include animal welfare 
parameters (low, intermediate, and high), geographical 
area (2 classes: Po Plain vs. Apennines), housing system 
(2 classes: freestall vs. tiestall), genetic type (2 classes: 

specialized breeds, Holstein Friesian and Brown Swiss, 
and the prevalence of these breeds vs. local breeds, 
Reggiana and Modenese), feeding system (2 classes: 
no TMR vs. TMR), and use of concentrates on the diet 
(low: <50%, high: ≥50%).

Clustering Analysis Results

According to the elbow method and confirmed by the 
Dunn index, the k-means analysis was fixed to 5 clusters 
(Supplemental Figure S2; see Notes), as it maximized 
coherence within the clusters and differences between 
clusters. The results of the cluster analysis and the dairy 
system classification are presented in Table 2. The 5 
clusters identified consisted of different numbers of 
farms from the total surveyed (949 farms). The 5 clusters 
comprised 195 (21%), 147 (15%), 26 (3%), 201 (21%), 
and 380 (40%) farms, respectively. The farms in the 
first cluster were located in the Apennines, most using 
tiestalls (71%), and rearing animals of a predominantly 
specialized genetic type fed mainly with single feedstuffs 
administered separately (no TMR, 90%). These farms 
had herds of 60 ± 36 cows with a MY of 26.5 ± 4.6 kg/
cow per day. Given these characteristics, the cluster was 
named the “traditional Apennines” (TA) dairy system. 
The second cluster closely resembled the first for almost 
all descriptors, except that all the farms were located in 
the Po Plain; MY was 26.3 ± 4.4 kg/cow per day, and the 
herd size was 55 ± 24 cows. This cluster was therefore 
labeled the “traditional Po Plain” (TP) dairy system. The 
third cluster was the smallest and differed from TP in 
rearing predominantly nonspecialized genetic type (local 
breeds). The MY was 18.3 ± 4.4 kg/cow per day, and the 
herd size was 52 ± 38 cows. It was called the “traditional 
Po Plain with local breeds” (TPLB) dairy system. About 
27% of the TPLB farms are in the Apennines area, and 
31% use freestall housing. The last 2 clusters together 
represented 61% of all farms surveyed. These clusters 
had the larger herds, with 120 ± 73 cows and 190 ± 
137 cows for the fourth and fifth clusters, respectively, 
and predominantly reared specialized genetic types in 
freestalls. In the fourth cluster, forages are administered 
separately from the concentrate, and MY was 30.7 ± 
4.6 kg/cow per day; it was labeled the “modern without 
TMR” (MWTMR) dairy system. The fifth cluster uses 
TMR, MY was 33.2 ± 4.4 kg/cow per day, and it was 
labeled the “modern with TMR” (MTMR) dairy system. 
Additionally, to better evaluate the performance of FT-
MIR in authenticating the dairy system, we tested its 
ability to differentiate between “macro-cluster,” namely 
traditional versus modern systems. For this purpose, 
traditional dairy systems were combined into a single 
“traditional” group, and modern systems were grouped 
separately into a “modern” group.
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Analysis of Variance: Effects of Dairy System  
and Season

The results of the ANOVA for milk composition, func-
tional longevity, percentage of concentrate in the lactat-
ing cows’ diet, and animal welfare parameters are given 
in Table 3. Statistical significance was obtained for the 
effects of both season and dairy system across all investi-
gated traits (P < 0.05). The dairy system × season interac-
tion significantly affected 4 traits: protein (%), fat (%), 
FPR, and SCS (U). The LSM for the season effect showed 
the same pattern across traits: a decrease in LSM values 
from winter to spring, further decreasing in summer (the 
lowest value), and then increasing in autumn, except for 
SCS, which reached the highest values in summer (3.02) 
and autumn (3.06), and the lowest in winter (2.89) and 
spring (2.84; Supplemental Table S1, see Notes). Regard-
ing the dairy system × season interaction, some changes 
were observed in the ranking between dairy systems for 
the concentration of some traits, but the LSM values fol-
low the same pattern throughout the seasons described 
before (Supplemental Figure S3, see Notes). The LSM for 
the effect of dairy system on milk composition, functional 
longevity, inclusion of concentrate (%) in the lactating 
cows’ diet, and animal welfare parameters are presented 
in Figure 1. In the case of the milk composition, the LSM 
results across the traditional systems were statistically 
equivalent, except for SCS (U), which was significantly 
higher in TPLB than in all the other dairy systems (P < 
0.05). Functional longevity (lactations/cow) exhibited 
the same trend. In contrast, TPLB had the lowest LSM 
value of all the dairy systems with respect to the use of 
concentrates (%). The LSM results for the modern sys-
tems, however, were equivalent for only 2 milk composi-
tion traits, FPR and SCS. The MTMR dairy system had 
higher values than the other systems for lactose content 
(%), and the proportion of concentrate used in the diet 
(%). The MWTMR system yielded lower values than the 
other systems for 3 milk composition traits, protein (%), 
fat (%), and FPR. Among the animal welfare parameters 
(scores 0%–100%), the score for MGT was higher (P < 
0.05) in MTMR than in the other dairy systems. For the 
SAE parameter such as MGT, MTMR had the highest 
LSM, although the LSM results for the other dairy sys-
tems were less clear for this parameter, with each system 
having equivalent values to at least 2 of the other systems. 
The TP dairy system had the lowest LSM value for ABM, 
which had equal values in all the other systems.

Animal Welfare, Farming Practices, and Farm 
Characteristics Authentication Performance

The results of the LDA classification for animal 
welfare parameters, farming practices, and farm char-
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acteristics are presented in Table 4. The genetic type, 
housing system, and feeding system obtained the 
highest ROC-AUC results. The genetic type obtained 
ROC-AUC results ranged from 0.95 to 0.99; regarding 
CC%, the specialized class showed consistently results 
across all analyses (99%), whereas the nonspecialized 
class (local breeds) displayed wide variability (interval: 
55%–74%). In the case of the housing system, the ROC-
AUC interval ranged from 0.89 to 0.93, and the 2 indi-
vidual classes exhibited similar variability. The values 
for the freestall class ranged from 87% to 91%, whereas 
for the tiestall class, they ranged from 73% to 77%. For 
the feeding system, the ROC-AUC ranged from 0.87 to 
0.91. The CC% results were balanced, with values rang-
ing from 77% to 82% for the TMR class and from 82% 
to 85% for the no TMR class. The ROC-AUC results for 
geographical region and use of concentrates were lower 
than those for previous traits. For geographical region, 
they ranged regarding the individual classes, the CC% 
for the Po Plain ranged from 82% to 91%, whereas for 
the Apennines the results were lower and more variable, 
ranging from 24% to 51%. The ROC-AUC of concen-
trate use ranged from 0.58 to 0.64; this trait exhibited 
highly varied CC% values, the low class ranging from 
86% to 98%, and the high class from 5% to 19%. The 
lowest results of all the traits were for animal welfare: 
The ROC-AUC results showed little variation, the in-
terval ranging from 0.53 to 0.58, and the CC% values, 
with some exceptions, were generally below 50% for all 
classes and analysis scenarios.

Dairy System Authentication Performance

The mean performance results obtained from the LDA 
model using the test dataset for the cluster and macro-
cluster classifications are presented in Table 5. The 
ROC-AUC results for the cluster classification model 
ranged from 0.84 to 0.87 across the different analyses, 
covering all samples and within each season. The highest 
ROC-AUC result was obtained when using all samples 
and winter samples, the lowest using autumn samples. 
The MTMR and TPLB systems had the best results for 
CC% with values in the ranges of 74% to 81% and 54% 
to 76%, respectively. The average results of the confu-
sion matrix using all samples (Table 6) showed that the 
model primarily misclassified MTMR samples as MWT-
MR (9% of the total MTMR reference samples) or as TA 
(7%). The TPLB samples were mainly misclassified as 
TA (12%), and the remaining systems combined account-
ed for just under 11% of misclassified TPLB samples. 
With regard to the other traditional systems, the CC% 
for TA ranged from 43% to 51% across different analy-
ses, with the model primarily misclassifying this system 
as MTMR (22%), followed by TP (18%) and MWTMR 
(16%). The CC% for TP ranged from 40% to 50%, and 
was primarily misclassified as TA (34%), and the remain-
ing samples were misclassified as one of the other dairy 
systems (about 26%). The CC% for the other modern 
system, MWTMR, ranged from 49% to 52%, with sam-
ples predominantly misclassified as MTMR (26%) and 
TA (14%). In the case of the macro-cluster classification 
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Table 3. Results (F-value and significance) from ANOVA of cluster and season as fixed effects and their interaction for milk composition, functional 
longevity, concentrate inclusion (%) in the lactating cows’ diet, and animal welfare parameter traits1

Item2 N P1 P99

F-value

RMSE3Season Dairy system
Season × 

dairy system

Milk composition              
  Protein, % 12,010 3.06 3.77 439*** 26*** 4*** 0.1
  Fat, % 11,948 2.98 4.66 339*** 19*** 2* 0.21
  FPR 11,878 0.88 1.37 88*** 15*** 2** 0.06
  Lactose, % 11,617 4.25 5.27 290*** 50*** 2 0.16
  Urea, mg/dL 11,752 16.48 38.85 20*** 7*** 1 5.28
  SCS, U 12,024 1.48 4.37 115*** 11** 6*** 0.32
Functional longevity, lactations/cow 11,891 1.7 3.4 16*** 36*** 1 0.11
CON 949 20 55 — 76*** — 6.4
Animal welfare scores, 0%–100%              
  MGT 949 50.6 93.6 — 12*** — 9.3
  SAE 949 46.1 87.5 — 27*** — 9.13
  ABM 949 60.2 88.0 — 16*** — 5.95
1Five levels of dairy system: traditional Apennines, traditional Po Plain, traditional Po Plain with local breeds, modern without TMR, modern with 
TMR; 4 levels of season: winter, spring, summer, autumn.
2FPR = fat:​protein ratio; CON = concentrate proportion (%) in the lactating cows’ diet; MGT = farm management (area A); SAE = structure and 
equipment (area B); ABM = animal-based measures (area C).
3RMSE = root mean square error.
*P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 1. Least squares means of milk composition, functional longevity, concentrate inclusion (%) in the lactating cows’ diet, and animal welfare 
parameter traits for the dairy system effect. The LSM with different letters (a–c) differ significantly (P < 0.05). Error bars represent SE. MGT = 
management (area A); SAE = structure and equipment (area B); ABM = animal-based measures (area C).
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(modern and traditional systems), the ROC-AUC showed 
minimal variability across the different analyses (range: 
0.88 to 0.9). Taking each class separately, the “modern 
class” consistently achieved better results, ranging from 
86% to 88%, while the results for the “traditional class” 
ranged from 73% to 78%, the highest performance for 
this class being in winter.

DISCUSSION

Discriminant Model Approach

Linear discriminant analysis is an effective model 
for food authentication (Granato et al., 2018; Jiménez-
Carvelo et al., 2019), and has been successfully used with 
milk MIR spectra data to authenticate farming practices 
and dairy systems (Bergamaschi et al., 2020; Frizzarin et 
al., 2021). For the authentication of daily variables (e.g., 
cow diet composition), it is preferable to record milk 
spectra and reference data simultaneously (Coppa et al., 
2021). However, if the aim is to authenticate quite stable 
practices over time (as in our study), several long-term 
milk spectra can be collected with only a few associated 
reference data points (Gori et al., 2012; Soyeurt et al., 
2022). Models developed using this approach can inte-
grate the minor annual variation in secondary practices 
on the dairy system and produce quite robust results as 

observed on Soyeurt et al. (2022). In any case, seasonal 
variability in milk composition could introduce biases 
and affect the model’s performance (Chen et al., 2014; 
Franceschi et al., 2019; Timlin et al., 2021), which must 
be checked to correctly interpret the results. In our trial, 
the overall performance of the model remained stable 
among seasons for farming practices and dairy systems. 
Consequently, there is no need to examine the seasonal 
pattern of the predictive model any further.

Animal Welfare: Effect of Dairy System  
and Authentication Performance

Due to the complexity of identifying and measuring 
cow welfare (Roche et al., 2009), the chemical compo-
sition of milk has been proposed as an indicator of it 
(Giannuzzi et al., 2024b). This would therefore allow the 
authentication of animal welfare by infrared spectros-
copy (Arnould et al., 2013; Bahadi et al., 2021). Some 
milk constituents have been proposed for this purpose, 
such as lactose content, which is associated with udder 
condition (Bobbo et al., 2016; Televičius et al., 2021), 
and milk urea content, which is an indicator of the 
livestock’s feeding status. Low milk urea content may 
indicate a deficiency in protein intake, whereas an ex-
cessively high content may affect uterine, hormonal, and 
ovarian functions (Roy et al., 2011). The FPR has also 
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Table 4. Authentication mean results obtained from the test set after running the LDA model 10 times using all samples, as well as separately within 
each year season for animal welfare parameters, farming practices, and characteristic traits1

Item2   Category3

All samples

 

Winter

 

Spring

 

Summer

 

Autumn

CC% ROC-AUC CC% ROC-AUC CC% ROC-AUC CC% ROC-AUC CC% ROC-AUC

MGT   High 56 0.58 48 0.55 49 0.56 49 0.58 41 0.53
  Medium 35 34 36 39 32
  Low 30 29 30 34 34

SAE   High 2 0.57 11 0.55 6 0.53 8 0.54 14 0.56
  Medium 23 29 27 31 33
  Low 83 69 73 69 63

ABM   High 30 0.58 41 0.57 39 0.56 38 0.57 46 0.56
  Medium 72 57 63 59 53
  Low 30 14 11 13 16

GA   Apennines 24 0.70 42 0.75 34 0.71 41 0.74 51 0.75
  Po Plain 91 88 88 86 82

HS   Freestall 91 0.91 90 0.92 91 0.93 90 0.90 87 0.89
  Tiestall 74 77 77 73 74

GT   Specialized 99 0.98 99 0.99 99 0.98 99 0.97 99 0.95
  Nonspecialized 74 75 72 62 55

FS   TMR 77 0.89 82 0.91 80 0.89 76 0.87 76 0.87
  No TMR 85   84   82 84   82

CON   High 5 0.64 14 0.61 13 0.62 12 0.59 19 0.58
  Low 98 91 93 90 86

1CC% = correct classify percentage; ROC-AUC = receiver operating characteristic area under the curve. ROC-AUC results are the macro-average of 
the obtained individual ROC-AUC curves (one vs. all approach).
2MGT = management (area A); SAE = structure and equipment (area B); ABM = animal-based measures (area C); GA = geographical area; HS = 
housing system; GT = genetic type; FS = feeding system; CON = concentrate proportion (%) in the lactating cows’ diet.
3For MGT, SAE, and ABM, the categories are based on the score (0%–100%): low (≤70%), intermediate (>70% to ≤ 80%), and high (>80%). For 
CON, the high (≥50%) and low (<50%) categories are the proportion of concentrate inclusion in the lactating cows’ diet.
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been proposed as an indicator of the animal’s susceptibil-
ity to metabolic diseases, such as acidosis and ketosis 
(Buttchereit et al., 2011; Guliński, 2021). Regarding 
the CReNBA evaluation, the LSM results showed that 
for MGT (the number of workers, worker training, and 
related activities) there were no significant differences 
between the dairy systems, except MTMR, which evi-
denced significantly higher scores than the others (P < 
0.05; Figure 1). This difference could be due to the better 
staff training, including veterinary support, associated 
with the larger herd size and intensive farm structure of 
MTMR (Lindena and Hess, 2022). Technological support 
and freestalls are also usually more common in modern 
and large farms, making tasks such as cleaning, feeding, 
and animal care more efficient (Bewley et al., 2017; Pou-
lopoulou et al., 2018; Edwards et al., 2020). In the case 
of SAE, which evaluated space, design, farm materials, 
and maintenance, MTMR again had the highest LSM 
score. However, there was greater confusion in the LSM 
values of this parameter in the other dairy systems be-
cause with SAE, as with MGT, the relationship between 
the factors evaluated and milk composition is fairly indi-
rect (Meyer et al., 2004; Walker et al., 2004; Appuhamy 
et al., 2016). These factors (MGT and SAE) appear to be 
strongly influenced by financial investment (Fernandes 
et al., 2021; Hansen, 2023). In this study, we found that 
as the scores of these parameters increased, so did the av-
erage herd size, MY, and the use of freestalls and TMR. 
Among the different aspects assessed by CReNBA meth-
odology (Bertocchi et al., 2018), the ABM is probably 
the parameter most clearly related to individual animal 
welfare (e.g., BCS, cleanliness, integument alterations, 
prevalence of lameness or mastitis, and so on) and conse-
quently to possible relationships with milk composition 
(Sant'Anna and Paranhos da Costa, 2011; Arnould et al., 
2013; Bahadi et al., 2021). Nevertheless, the LSM results 
for ABM revealed no differences between the different 

dairy systems, except TP, which had significantly lower 
score than the others. To interpret this result, it is impor-
tant to note certain considerations. For this parameter, 
we did not find the simultaneous increase in economic 
resources (e.g., herd size and MY) and CReNBA score, 
which initially suggested no relationship with the eco-
nomic investment of the dairy system. The reason for 
this could be the housing system—TP uses exclusively 
tiestalls (100%), followed by TA and TPLB, which 
use tiestalls about 70% of the time—even though the 
CReNBA evaluation is theoretically based on the type of 
housing (Bertocchi et al., 2018). Nevertheless, we found 
that when the housing system was included as a factor 
in the ANOVA, the freestall class was assigned a higher 
score for ABM. It is also worth noting that ABM is the 
least specific of the 3 parameters related to housing type, 
differing only in freedom of movement and hoof health 
(Bertocchi et al., 2018). Without knowing the scores as-
signed to each checklist item, it is difficult to determine 
whether these differences are in fact critical. Given these 
uncertainties, these results must be treated with caution. 
As CReNBA is a herd level welfare evaluation, it is ex-
pected to reflect changes in bulk milk composition, as 
bulk milk quality relates to the herd as a whole, taking 
into account overall management and farm environment 
conditions (Velthuis and van Asseldonk, 2011). Although 
each CReNBA welfare parameter has several elements 
that could influence milk composition, the classes es-
tablished for each parameter (low, medium, and high) 
did not appear to follow a defined pattern. Differences 
in milk composition do not appear to be associated with 
the classes of the different welfare parameters studied. 
Similar results were found by Ginestreti et al. (2020). 
The interactions between the items included in each 
CReNBA welfare parameter and their individual effects 
on milk composition are also unknown. Furthermore, the 
CReNBA evaluation counts the entire herd, including 
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Table 5. Authentication mean results obtained from the test set after running the LDA model 10 times using all samples, as well as separately within 
each year season for cluster and macro-cluster dairy system classification1

Item   Category2

All samples

 

Winter

 

Spring

 

Summer

 

Autumn

CC% ROC-AUC CC% ROC-AUC CC% ROC-AUC CC% ROC-AUC CC% ROC-AUC

Cluster   TA 44 0.87 51 0.87 43 0.86 49 0.86 48 0.84
  TP 40   43   41   50   40  
  TPLB 76   68   62   56   54  
  MWTMR 52   52   51   49   52  
  MTMR 81   82   81   78   74  

Macro- 
  cluster3

  Traditional 73 0.89 78 0.90 75 0.90 74 0.88 73 0.88
  Modern 88 87 88 85 86

1CC% = correct classify percentage, ROC-AUC = receiver operating characteristic area under the curve. ROC-AUC results are the macro-average of 
the obtained individual ROC-AUCs curves (one vs. all approach).
2TA = traditional Apennines; TP = traditional Po Plain; TPLB = traditional Po Plain with local breeds; MWTMR = modern without TMR; MTMR = 
modern with TMR.
3The macro-cluster was created by merging individual cluster classes based on whether they belonged to a modern or traditional system.
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nonlactating cows (Bertocchi et al., 2018), which could 
further reduce the possible association with milk com-
position (Ginestreti et al., 2020). Additionally, intrinsic 
limitations of phenotypes derived from bulk tank milk 
include the dilution of individual milk information (Gin-
estreti et al., 2020), reduced variability (Visentin et al., 
2015), and the nonlinear relationship between individual 
milk and bulk tank milk (De Lorenzi et al., 2021). These 
factors could contribute to the almost null authentication 
performance observed in this study for animal welfare 
traits using FT-MIR.

Authentication of Farming Practices and Farm 
Characteristics by Infrared Spectroscopy

The ability of infrared spectroscopy to authenticate 
farming practices is mainly due to the biochemical 
changes that such practices bring about, both directly 
and indirectly, in milk composition. This ability has 
been demonstrated for feeding practices (Valenti et 
al., 2013; Capuano et al., 2014), as feed is considered 
the most important factor affecting milk composition 
(Chilliard et al., 2007; Cabiddu et al., 2022). Among 
the feed-related practices studied, the best results were 
obtained for feeding system (TMR vs. no TMR; Table 
4). This is confirmed by similar studies, where a high 
proportion of samples were correctly classified accord-
ing to the feeding system (Gori et al., 2012; Frizzarin et 
al., 2021), although in both cases there were differences 
in diet between the systems. In any case, the use of TMR 
alone implies differences in milk composition. This is 
mainly because using TMR, which combines all dietary 
ingredients (e.g., concentrates, forages, minerals, other 
additives) into a single formulated ration rather than al-
lowing cows to consume ingredients separately, ensures 
a nutritionally balanced intake in each bite (Schingoethe, 
2017). Consequently, the use of TMR provides cows 
with a more precise and palatable diet, which reduces 
sorting behavior, improves nutrient assimilation, and re-
duces absorption variability (Bargo et al., 2002; Ferland 
et al., 2018). However, authentication based on a single 
feed criterion can lead to unreliable results (Coppa et 

al., 2021), as observed in the present study when only 
the variable of concentrate inclusion (%) in the diet was 
included (ROC-AUC <0.64). Even when Coppa et al. 
(2021) used a different threshold to categorize the classes 
(28%), they still obtained similar poor results. Although 
genetic type is known to affect milk composition (Soy-
eurt et al., 2006; Stocco et al., 2017), as an isolated factor 
it lacks potential for authentication by infrared spectros-
copy (Mouazen et al., 2009; Valenti et al., 2013). The 
successful authentication observed (ROC-AUC >0.95) 
is attributable to significant differences in the dairy sys-
tems in which the animals are housed and fed. Despite 
the potential advantages of local breeds over specialized 
cows in terms of functional and milk quality traits, there 
is still a significant disparity in MY (Gandini et al., 2007; 
Mancin et al., 2024). This difference in MY production, 
in turn, has a direct impact on the resource inputs and 
outputs that could influence the cow’s diet (Sherf, 2000; 
Soini et al., 2012). Differences in resources are also well 
known in farm systems with different types of housing 
systems. Because the installation of freestalls requires 
significant investment, it is typically larger farms that 
use them, whereas smaller farms use tiestalls (Summer et 
al., 2014). For example, in this study, freestall farms had 
3 times as many cows and a MY that was 5.8 kg/cow per 
day greater than tiestall farms. Housing system design 
is also responsible for significant differences in farm 
management and organization, as tiestalls required more 
working hours per cow, which affects the overall pro-
ductivity of the farm (Poulopoulou et al., 2018). Other 
factors, such as environmental protection, space for the 
cow (for eating, sleeping, drinking), feeding design, or 
udder health, that are closely related to the housing sys-
tem can affect milk composition (Summer et al., 2014; 
Bewley et al., 2017; Biasato et al., 2019), which could 
explain the good performance obtained (ROC-AUC 
>0.89). In the case of geographical area, the a priori dif-
ference in the composition of the milk is due to expected 
differences in available resources between the Apennine 
and the Po Plain systems. Historically, the former has 
been associated with small herds of native breeds graz-
ing on local resources (Santini et al., 2013). However, 
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Table 6. Confusion matrix mean results obtained from the test set after running the linear discriminant analysis 
(LDA) model 10 times using all samples for the cluster dairy system classification

Prediction

Reference

Traditional 
Apennines

Traditional 
Po Plain

Traditional Po Plain 
with local breeds

Modern 
without TMR

Modern 
with TMR

Traditional Apennines 249 153 11 90 82
Traditional Po Plain 104 185 3 38 27
Traditional Po Plain with local breeds 6 5 68 4 3
Modern without TMR 89 49 5 345 114
Modern with TMR 123 62 2 169 997
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traditional farms in the hills and mountains are gradually 
shifting toward more intensive systems (Cocca et al., 
2012; Sturaro et al., 2013), especially in mountainous 
areas with lower elevations (Cocca et al., 2012). This 
would reduce the hypothetically expected gap between 
production regions. For example, in this study, resources 
such as freestalls and TMR were used by 41% and 26% 
of the farms in the Apennines, whereas in the Po Plain, 
they were used by 77.5% and 49% of the farms, respec-
tively. Furthermore, the average MY and the proportion 
of concentrates in the diet (%) were 27.3 kg/cow per day 
and 40% in the Apennines and 30.8 kg/cow per day and 
43% in the Po Plain. Therefore, the medium-low aver-
age performance we observed (ROC-AUC of 0.70) was 
expected and was in line with the findings of Coppa et 
al. (2012) and Valenti et al. (2013). The putative charac-
teristics of mountain milk (e.g., color, fatty acid profile) 
appear to be insufficient for discrimination by infrared 
spectroscopy, so it would be difficult to authenticate 
geographical area using this technique (Engel et al., 
2007; Coppa et al., 2012). As the differences in manage-
ment and resources between these areas decrease, it will 
become even more difficult to make positive predictions 
from infrared spectra (Cozzi et al., 2009).

Authentication of Dairy System  
by Infrared Spectroscopy

The results of dairy system authentication by infra-
red spectroscopy depend on the overall variability in 
agricultural practices among the different systems, es-
pecially where more restrictive practices are concerned 
(Coppa et al., 2021). This could explain the variability in 
authentication performance observed in similar studies 
(Cozzi et al., 2009; Bergamaschi et al., 2020; Manuelian 
et al., 2021). The clustering method was used to create 
groups of dairy systems with the greatest differences in 
management and practices, potentially reflecting varia-
tions in milk composition. To determine the optimal 
number of clusters, we used the elbow method, which 
establishes a threshold based on the variance in the 
groups, beyond which adding one more group does not 
significantly improve the results (Bholowalia and Ku-
mar, 2014). However, when analyzing a larger number 
of dairy systems, it is more likely that some of them will 
present similarities, leading to a loss of performance 
(Bergamaschi et al., 2020). For instance, in this study, 
close to 30% of TA and TPLB had freestall housing sys-
tems, the principal characteristic of the modern systems. 
At the same time, in the Apennine region, the typical 
TA area, 27% of farms were TPLB, and 12% MTMR. 
This could be one of the reasons for the confounding or 
minor effect of dairy system on milk composition. The 
LSM results did not show clear differences between the 

systems, as observed in other studies where the dairy 
system had a weak effect on milk composition (Sturaro 
et al., 2013; Bittante et al., 2015). For example, there 
were no significant differences between the LSM for all 
milk composition traits in 2 of the 3 traditional systems, 
and for 4 of these traits, the 3 traditional systems had 
statistically equivalent values (P < 0.05). Furthermore, 
it is likely that certain farming practices have a greater 
influence on milk composition than others (Manuelian 
et al., 2021). This may help to explain why MWTMR 
is equivalent to MTMR in only 2 composition traits, as 
they have the same characteristics, except for feeding 
system. The confusing effect of dairy system is mirrored 
in the predictive model, so that the CC% was good for 
only 2 classes (Table 5), as explained by the confusion 
matrix (Table 6). In contrast, the overall performance 
of the model was good (ROC-AUC >0.84), which is be-
cause the ROC-AUC converts the multiple classification 
problem into a binary one (Galar et al., 2011). Because 
analyzing fewer classes results in greater significant dif-
ferences in their effects on milk composition (Coppa et 
al., 2012), dairy systems are likely to be diverse, hence 
able to be authenticated (Cozzi et al., 2009). The LSM 
results confirmed this when we applied the same mixed 
model as for the cluster, but using the macro-cluster 
classification. All LSM show significant differences be-
tween the traditional and modern systems, allowing for 
the authentication of individual classes and of the total 
model (ROC-AUC >0.88). This is in line with the find-
ings of Bergamaschi et al. (2020), who obtained 73.5% 
accuracy in discriminating 3 classes, and 65% accuracy 
in discriminating 5 classes using FT-MIR.

CONCLUSIONS

This study examined the feasibility of using FT-MIR 
to identify characteristics of dairy systems. The results 
show that it is possible to authenticate farming practices, 
and thus differentiate dairy systems. Because milk qual-
ity is already routinely assessed by FT-MIR within milk 
recording schemes on most dairy farms, this opens the 
way to routinely authenticating the practices and systems 
under which dairy products are produced. However, the 
discriminatory performance of FT-MIR appears suitable 
for routine use only when substantial differences in farm-
ing practices affect milk composition, thus improving the 
predictive ability of FT-MIR. Regarding the authentica-
tion of CReNBA animal welfare area using FT-MIR, this 
currently does not seem feasible, suggesting that the 
variations in herd animal welfare captured by different 
CReNBA indices are only weakly reflected in bulk milk. 
The results of this research could help dairy production 
chains target effective authentication techniques to dif-
ferentiate Parmigiano Reggiano products.
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rier-transform MIR; LDA = linear discriminant analysis; 
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AUC = area under the receiver operating characteristic 
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